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We introduce a dynamical network model which unifies a number of network families which are individually
known to exhibit q-exponential degree distributions. The present model dynamics incorporates static �non-
growing� self-organizing networks, preferentially growing networks, and �preferentially� rewiring networks.
Further, it exhibits a natural random graph limit. The proposed model generalizes network dynamics to rewir-
ing and growth modes which depend on internal topology as well as on a metric imposed by the space they are
embedded in. In all of the networks emerging from the presented model we find q-exponential degree distri-
butions over a large parameter space. We comment on the parameter dependence of the corresponding entropic
index q for the degree distributions, and on the behavior of the clustering coefficients and neighboring con-
nectivity distributions.
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I. INTRODUCTION

Over the past two decades, nonextensive statistical me-
chanics has successfully addressed a wide spectrum of non-
equilibrium phenomena in nonergodic and other complex
systems �1,2�. Recently, it has also entered the field of com-
plex networks �3–10�. Nonextensive statistical mechanics is
a generalization of Boltzmann-Gibbs �BG� statistical me-
chanics. It is based on the entropy

Sq �
1 −� dx�p�x��q

q − 1
�S1 = SBG � −� dxp�x�ln p�x�� .

�1�

The extremization of the entropy Sq under appropriate con-
straints �11� yields the stationary-state distribution. This is of
the q-exponential form, where the q-exponential function is
defined as

eq
x � �1 + �1 − q�x�1/�1−q�, �2�

for 1+ �1−q�x�0, and zero otherwise �with e1
x =ex�. The tail

exponent ��1/ �q−1� characterizes the asymptotic power-
law distribution.

Since the very beginning of the tremendous recent mod-
eling efforts of complex networks it has been noticed that
degree distributions asymptotically follow power laws �12�,
or even exact q exponentials �13�. The model in �12� de-
scribes growing networks with a so-called preferential at-
tachment rule, meaning that any new node i being added to
the system links itself to an already existing node j in the
network with a probability that is proportional to the degree
kj of node j. In �13� this model was extended to also allow
for preferential rewiring. The analytical solution to the model

has an exact q-exponential result, P�k���1− �1−q� k
l
�1/1−q,

where the nonextensivity parameter q and the power onset l
are defined in terms of the parameters � and � used in �13�
by q�1+1/� and l��1−q��, for details see the last para-
graph of Sec. III.

Many real world networks, like the internet, air travel,
railway, etc., are embedded in metric spaces. This has re-
cently been accounted for in the literature to some extent,
see, e.g., �14–16�. Quite similar to �14� in �3� preferential
attachment networks have been embedded in Euclidean
space, where the attachment probability for a newly added
node is not only proportional to the degrees of existing
nodes, but also depends on the Euclidean distance between
nodes. The model is realized by setting the linking probabil-
ity of a new node to an existing node i to be plink�ki /ri

�

���0�, where ri is the distance between the new node and
node i; �=0 corresponds to the model in �12� which has no
metrics. The analysis of the degree distributions of the result-
ing networks has exhibited �3� q exponentials with a clear �
dependence of the nonextensivity parameter q. In the large �
limit, q approaches unity, i.e., random networks are recov-
ered in the Boltzmann-Gibbs limit. In an effort to understand
the evolution of socioeconomic networks, a model was pro-
posed in �6� that builds upon �13� but introduces a rewiring
scheme which depends on the internal network distance be-
tween two nodes, i.e., the number of steps needed to connect
the two nodes. The emerging degree distributions have been
subjected to a statistical analysis where the �null� hypothesis
of q exponentials could not be rejected.

It has been found that networks exhibiting degree distri-
butions compatible with q exponentials are not at all limited
to growing and preferentially organizing networks. A model
for nongrowing networks which was recently put forward in
�4� also unambiguously exhibits q-exponential degree distri-
butions. This model was motivated by interpreting networks
as a certain type of gas where upon an �inelastic� collision of
two nodes, links get transferred in analogy to the energy-
momentum transfer in real gases. In this model a fixed num-
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ber of nodes in a �undirected� network can merge, i.e., two
nodes fuse into one single node, which keeps the union of
links of the two original nodes; the link connecting the two
nodes before the merger is removed. At the same time a new
node is introduced to the system and is linked randomly to
any of the existing nodes in the network �17�. Due to the
nature of this model the number of links is not strictly
conserved—which can be thought of as jumps between dis-
crete states in some phase space. The model has been further
generalized to exhibit a distance dependence as in �3�, how-
ever, ri is not the Euclidean but is rather the internal distance.
Again, the resulting degree distributions have q-exponential
form �4�.

A quite different approach was taken in �18� where an
ensemble interpretation of random networks has been
adopted, motivated by superstatistics �19�. Here it was as-

sumed that the average connectivity k̄ in random networks is

fluctuating according to a distribution ��k̄�, which is some-
times associated with a hidden-variable distribution. In this
sense a network with any degree distribution can be seen as
a superposition of random networks with the degree distri-

bution given by p�k�=	0
�d���k̄� k̄ke−k̄

k! . It was shown in �18�,
that an asymptotically power-law functional form of the hid-

den variable distribution, ��k̄�� k̄−�, leads to a q-exponential
degree distribution. This is an exact result. More recently a
possible connection between small-world networks and the
maximum Sq-entropy principle, as well as to the hidden vari-
able method �18�, has been noticed in �9�.

In yet another view, networks have recently been treated
as statistical systems on a Hamiltonian basis �21–24�. It has
been shown that these systems show a phase-transition-like
behavior �22�, along which network structure changes. In the
low temperature phase one finds networks of star type,
meaning that a few nodes are extremely well connected re-
sulting even in a discontinuous p�k�; in the high temperature
phase one finds random networks. Surprisingly, for a special
type of Hamiltonian, networks with q-exponential degree
distributions emerge right at the transition point �24�.

Given the above characteristics of networks and the fact
that a vast number of real-world and model networks show
asymptotic power-law degree distributions, it seems quite
natural to look for a deeper connection between networks
and nonextensive statistical physics. The mere fact that net-
works are intrinsically nonextensive can already be seen in a
simple combinatorial argument, given, e.g., in �25�. The pur-
pose of this work is to show that various model types can be
unified into a single dynamic network-formation model,
characterized by a reasonably small number of parameters.
We show explicitly how a number of famous network forma-
tion models appear as special cases of the proposed model,
ranging from random graphs �27� to highly nontrivial net-
works, showing not only power-law degree distributions but
also nontrivial clustering and neighboring connectivity.
Maybe the most remarkable finding is that, within the param-
eter space of the proposed model, all these networks types
seem to be compatible with q-exponential degree distribu-
tions. A clear example is the model introduced in �13�. In-
deed, the authors analytically obtain p�k�� �k+k0�−�, which

can be rewritten in the q-exponential form as p�k��eq
−k/l with

q= �+1
� and l=k0�q−1�. Other network models follow the

same path, although the results are only numerical. The
emergence, for networks, of the basic distribution within
nonextensive statistical mechanics, is not so surprising after
all. Indeed, if we associate to each link an “energy” �or cost�
and to each node one-half of the “energy” carried by its links
�the other one-half being associated with the other nodes to
which any specific node is linked�, the distribution of ener-
gies optimizing Sq precisely coincides with the degree distri-
bution. If, for any reason, we consider k as the modulus of a
d-dimensional vector k, the optimization of the functional
Sq�p�k�� may lead to p�k��k	eq

−k/l, where k	 plays the role of
a density of states, 	�d� being either zero, or positive or
negative.

II. MODEL

The following model is a unification and generalization of
the models presented in �3,4�. The model in �3� captures
preferential growing aspects of networks embedded into a
metric space, while �4� introduces a static, self-organizing
model with a sensitivity to an internal metric �chemical dis-
tance, Diekstra distance�. The rewiring scheme there can be
thought of as having preferential attachment aspects in one
of its limits �17� �see below�, but has none in the other limit.

The network evolves in time as described in �3�: At t=1,
the first node �i=1� is placed at some arbitrary position in a
metric space. The next node is placed isotropically on a
sphere �in that space� of radius r, which is drawn from a
distribution PG�r��1/r�G ��G
0�, G stands for growth. To
avoid problems with the singularity, we impose a cutoff at
rmin=1. The second node is linked to the first. The third node
is placed again isotropically on a sphere with random radius
r� PG, however, the center of the sphere is now the bary-
center of all the preexisting nodes. From the third added
node on, there is an ambiguity where the newly positioned
node should link to. We choose a generalized preferential
attachment process, meaning that the probability that the
newly created node i attaches to a previously existing node j
is proportional to the degree kj of the existing node j, and on
the metric �Euclidean� distance between i and j, denoted by
rij. In particular the linking probability is

pij
A =

kj/rij
�A



j=1

N�t�−1

kj/rij
�A

, �3�

where N�t� is the number of nodes at time t. It is not neces-
sary that at each time step only one node is entering the
system, so we immediately generalize that a number of n̄

nodes are produced and linked to the existing network with l̄

links per time step. Note that n̄ and l̄ can also be random
numbers from an arbitrary distribution. For simplicity and

clarity we fix n̄=1 and l̄=1.
After every � time step, a different action takes place on

the network. At this time step the network does not grow but
a pair of nodes, say i and j, merge to form one single node
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�17�. This node keeps the name of one of the original nodes,
say, for example, i. This node now gains all the links of the
other node j, resulting in a change of degree for node i ac-
cording to

ki → ki + kj − Ncommon if �i, j� are not first neighbors,

ki → ki + kj − Ncommon − 2 if �i, j� are first neighbors,

�4�

where Ncommon is the number of nodes, which shared links to
both of i and j before the merger. In the case that i and j were
first neighbors before the merger, i.e., they had been previ-
ously linked, the removal of this link will be taken care of by
the term −2 in Eq. �4�. The probability that two nodes i and
j merge can be made distance dependent, as before. In par-
ticular, to stay close to the model in �4�, we choose the fol-
lowing procedure. We randomly choose node i with prob-
ability �1/N�t� and then choose the merging partner j with
probability

pij
M =

dij
−�M



j

dij
−�M

��M � 0� , �5�

where dij is the shortest distance �path� on the network con-
necting nodes i and j; Obviously, tuning �M from 0 toward
large values, switches the model from the case where j is
picked fully at random ��1/N�t��, to a case where only near-
est neighbors of i will have a non-negligible chance to get
chosen for the merger. Note that the number of nodes is
reduced by one at that point. To keep the number of nodes
constant at this time step, a new node is introduced and

linked with l̄ of the existing nodes with probability given in
Eq. �3�.

The relevant model parameters are the merging exponent
�M, the attachment exponent �A, controlling the sensitivity
of distance in the network, and the relative rate of merging
and growing, �. We explicitly checked that the remaining

parameters, �G, n̄, l̄, and rmin play marginal roles in the dy-
namics of the model. In particular, the distribution of points
in space as governed by �G does practically not influence the
resulting degree distributions, in the range of �G� �1,3�.

We simulate this model and record the degrees ki, the
clustering coefficients ci �defined below�, and the nearest-
neighbor connectivity ki

nn, for all individual nodes i �Fig. 1�.
From these values we derive distribution functions �as a
function of k�. In Fig. 2 typical degree distributions are
shown for three typical values of �. Obviously, the distribu-
tion is dominated by a power-law decay �see details of the
functional form below� ending in an exponential finite size
cutoff for large k.

The clustering coefficient of node i, ci is defined by

ci =
2ei

ki�ki − 1�
, �6�

with ei being the number of triangles node i is part of. c�k� is
obtained by averaging over all ci with a fixed k. It has been
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FIG. 1. �Color online� �a� Time evolution of the degree of the
best-connected node for the parameters, N=10000, �A=0, �M =0
and three values of �. Asymptotically k�t� approaches the mean-
field result �28�, i.e., a square root behavior �straight line�; the su-
perimposed jumps are due to the merging processes. �b� Same as
the randomly chosen node. Large downward jumps in the degree
occur when the node merges and loses all of its links to the other
node. Large upward jumps are due to a merging process where the
other node loses all of its links to the randomly chosen node under
investigation. Small jumps mean that either the node merges with
small degree nodes or that it receives new links via the attachment
mechanism.
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FIG. 2. �Color online� Degree distribution P�k� �unnormalized�
for N=10 000, �A=0, �M =0 and various values of �. This case
corresponds to a growing network with preferential linking and ran-
dom merging of nodes. We use it to show the effect of � on the
decay exponents. For larger values of � the exponents become
larger. The case �A�0, �M �0 computationally limits the size of
the networks.
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noted that c�k� contains information about hierarchies
present in networks �26�. For Erdös-Rényi �ER� networks
�27�, as well as for pure preferential attachment algorithms
without the possibility of rewiring, the clustering coefficient
c�k� vs degree is flat. The global clustering coefficient is the
average over all nodes C= �ci�i. A large global clustering co-
efficient is often used for identification of the small-world
structure �20�. The average nearest-neighbor connectivity �of
the neighbors� of node i is

ki
nn =

1

ki



j neighbor of i

kj . �7�

When plotted as a function of k, knn�k� is a measure to assess
the assortativity of networks. A rising function means assor-
tativity, which is the tendency for well-connected nodes to
link to other well-connected ones, while a declining function
signals disassortative structure. Depending on the variables
of the model, known networks result as natural limits.

(1) Soares and co-workers limit. For the lim �→� we
have no merging, and �M is an irrelevant parameter. The
model corresponding to this limit has been proposed and
studied in �3�.

(2) Albert-Barabasi limit. The lim �→� and lim �A→0,
gets rid of the metric in the Soares and co-workers model
and recovers the original Albert-Barabasi preferential attach-
ment model �12�.

(3) Kim and co-workers limits. The limit lim �→0 allows
no preferential growing of the network. If at each time step

after every merger a new node is linked randomly with l̄
links to the network, the model reported in �4� is recovered.
The lim �→0 model with lim �M →0 �lim �M →�� recov-
ers the random case �neighbor case� in �17�.

III. NONEXTENSIVE CHARACTERIZATION OF
COMPLEX NETWORKS

There has been a convincing body of evidence that for a
large class of networks �normalized�, degree distributions
can be fit by q exponentials,

P�k� = eq
−�k−1�/� �k = 1,2,3,4, . . .� , �8�

where the q-exponential function is defined in Eq. �2�, with
q�1, and �
0 some characteristic number of links. A con-
venient procedure to perform a two-parameter fit of this kind
is to take the q logarithm of the distribution P, defined by

Zq�k�� lnq P�k��
�P�k��1−q−1

1−q . This is done for a series of dif-
ferent values of q. The function Zq�k� which can be best fit
�least squares� with a straight line determines the value of q,
the slope being −�. Note, that a least-squares fit of Zq�k�
corresponds to logarithmically weighted errors in P�k�.

In Fig. 3 we show the degree distribution for several sys-
tem sizes together with the q logarithm Zq�k�, from which an
optimum q and � can be obtained. We conclude that, with
good precision, the Ansatz in Eq. �8� for the degree distribu-
tion, when seen as a null hypothesis, cannot be rejected on
the basis of a �2 statistics for any reasonable significance
level, for the system sizes studied.

For actual curve fitting, it is often more convenient to use
the cumulative distributions, which can be parametrized by

P��k� = eqc

−�k−1�/�c �k = 1,2,3,4, . . .� . �9�

On the other hand, the corresponding cumulative distribution
P��k� is given by �we switch to integral notation for sim-
plicity for a moment�

P��k� � 1 − �
1

k

dk�P�k�� = �1 −
1 − q

�
�k − 1��2−q/1−q

.

�10�

By comparison of coefficients the cumulative parameters are
given by

qc =
1

2 − q
and �c =

�

2 − q
. �11�

Whenever we talk about q values corresponding to a cumu-
lative distribution, we use the notation qc and �c, where c
indicates cumulative.

In addition to the q-exponential fits we have fitted the
degree distributions with pure powers and pure exponential
�fixed q=1�, and obtained much worse values for �2. The
remarkable quality of q-exponential fits to the degree distri-
butions from the model, reveals a connection �3� of scale-
free network dynamics to nonextensive statistical mechanics
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FIG. 3. �Color online� �a� P�k� for �=2, �A=1, �M =1, and
various system sizes �symbols�. The line is the q-exponential fit for
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line with Zq. The quality of the fit in �a� is given by standard �2
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�1,2�. To make the point more clear, consider the entropy

Sq �

1 − �
1

�

dk�p�k��q

q − 1 �S1 = SBG � − �
1

�

dkp�k�ln p�k�� ,

�12�

where we assume k as a continuous variable for simplicity. If
we extremize Sq with the constraints �11�

�
1

�

dkp�k� = 1 and

�
1

�

dkk�p�k��q

�
1

�

dk�p�k��q

= K , �13�

we obtain

p�k� =
eq

−��k−1�

�
1

�

dk�eq
−��k�−1�

= ��2 − q�eq
−��k−1� �k � 1� ,

�14�

where � is determined through Eq. �13�. Both positivity of
p�k� and the normalization constraint �13� impose q2.

Let us emphasize again that models do exist that can be
handled analytically, and which exhibit precisely

q-exponential degree distributions. Such is the case of �13�,
where the degree distribution is of the form p�k�� �k+k0�−�,
which can be rewritten as a q exponential with q= �+1

�

=
2m�2−r�+1−p−r

m�3−2r�+1−p−r , where �m , p ,r� are parameters of the particu-

lar model. It is important to stress that the model of �13� is
not a special case of our model, even in the case �A=�M
=0 �preferential attachment and random merging� the two
models cannot directly be mapped into each other. It is how-
ever interesting that both fall into the same universality class
of distribution functions.

IV. RESULTS

Realizing the above network model in numerical simula-
tions we compute degree distributions, clustering coeffi-
cients, and neighbor connectivity, for a scan over the relevant
parameter space, spanned by �, �A, and �M. All of the fol-
lowing data were obtained from averages over 100 identical
network realizations with a final N�tmax�=1000; for finite size
checks we have included runs with N�tmax�=500 and 2000.
The reason for these relatively modest network sizes is that,
at every time step, all network distances must be evaluated.
The remaining parameters have been checked to be of mar-

ginal importance and have been fixed to �G=1, n̄=1, and l̄
=1.

The fitted values for the nonextensive index qc and the
characteristic degree �c are shown in Fig. 4 over the
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FIG. 4. �Color online� qc �left-hand column� and �c �center column� values from q-exponential fits to the cumulative degree distributions
P�
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UNIFIED MODEL FOR NETWORK DYNAMICS EXHIBITING … PHYSICAL REVIEW E 76, 036111 �2007�

036111-5



parameter space. From top to bottom three values of � are
shown. The qc index is declining in all three parameters, �A,
�M, and �. It eventually converges to a plateau in the �A-�M
plane. The height of the plateau slowly decreases with higher
�, but remains above 1; qc=1 corresponds to the exponential
�ER� case. For low �M there is a maximum of �c at about
�A3; for larger �M a plateau is forming for all �A. This
plateau remains constant as a function of �. The quality of
the q-exponential fit is demonstrated by the �2 test statistics
per degree of freedom.

As in �4� we observe a finite size effect in the data. In Fig.
5�a� we show the dependence of the degree distribution pa-
rameters as a function of �M for different system sizes for a
fixed �A=5, and �=2. The fits for �c are shown in Fig. 5�b�.

We now turn to the clustering and neighbor connectivity
of the emerging networks. In Fig. 6 we show the clustering
coefficient c and the average neighbor connectivity knn as a
function of k. For both quantities, the functional form of the
decline with k is well fit with a two-parameter exponential
fit, exp�−�1 k+�2�.

In Fig. 7 we show the fit parameters �a� �1 for c�k� and �b�
knn�k� for �=0.5. For larger � the clustering coefficients be-
come drastically smaller, as expected for the �→� and �A
→0 limit. Fits for �A
5 and �M 
5 become increasingly
noisy and are omitted from the figure.
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In Fig. 8 we compare the global clustering coefficients
from our model with those obtained from a random graph
with the same dimensions �same number of nodes and links�.
For the Erdös-Renyi random graph the clustering coefficient
is Crand= �k� /N−1. The comparison makes clear that there is
almost no attachment effects for �A
3 �i.e., negligible de-
pendence from �A�, and a strong dependence on �M and �, as

expected. A large number of real-world networks shows clus-
tering coefficients which are within the range found in the
presented model, i.e., 0C0.1, which are all well above
the corresponding ER values. For example, these include the
WWW �C=0.1�, power grid �C=0.08�, protein interaction
networks �C=0.02�, the marine foodweb �C=0.08�, or the
Medline cooperation network �C=0.06�, data from �10,29�.

V. DISCUSSION

We have introduced a general network formation model
which is able to recover, as particular instances, a large class
of known network types. We checked that, to a very good
approximation �high statistical significance�, the resulting de-
gree distributions exhibit q-exponential forms, with q
1.
While a full theory of how complex networks are connected
to q�1 statistical mechanics is still missing, we provide fur-
ther evidence that such a relation does indeed exist. As pre-
viously mentioned, if we associate a finite fixed energy or
“cost” to every bond, and associate with each node one-half
of the energy corresponding to its bonds �the other one-half
corresponding to the other nodes linked by those same
bonds�, then the degree distribution can be seen as an energy
distribution of the type emerging within nonextensive statis-
tical mechanics �we recall that the stationary distribution ob-
tained within Boltzmann-Gibbs statistics is of the exponen-
tial form, instead of the q-exponential one observed in scale-
free networks�. It might well be that the full understanding of
this relation arises from the discrete nature of networks. The
importance of appropriate values of q�1 for systems living
in topologies with a vanishing Lebesgue measure has been
pointed out before �2�. This possibly makes phase space for
certain nonextensive systems look like a network itself. In
this view the basis of nonextensive systems could be related
to a networklike structure of their phase space, explaining
the ubiquity of q-exponential distribution functions in the
world of networks.
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Let us end by pointing out that, in variance with frequent
such statements in the literature, the present model neatly
illustrates that never-ending growth is not necessary for hav-
ing networks that are �asymptotically� scale free. In this
sense we are in full consensus with earlier work �17,21�,
q-exponential degree distributions do emerge for large
enough networks which do not necessarily grow.
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